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* ABSTRACT

Orthogonal collocation using piecewise cubic Hermite functions is used to

solve the elliptic partial differential equations arising from pseudo-

continuum models of heat transfer in a packed bed. Problems arising from a

discontinuity in the wall boundary condition and from the semi-infinite domain

of the differential operator are discussed. Comparison is made between the

computed solution and experimental results.
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SIGNIFICANCF AND EXPLANATION

Models used by engineers are often simplified in the interests of

mathematical convenience, rather than in accord with physical reality. A

typical case is the omission of axial conduction from models of heat transfer

in packed beds, thus allowing an initial-value problem to be solved in the

axial direction, instead of a boundary-value problem.

This work demonstrates the application of orthogonal collocation, a

numerical method for the solution of differential equations, to packed bed

models which include axial conduction. The method is accurate and relatively

fast, due to the local nature of the approximating functions used; these make

it a good candidate for the solution of "difficult" problems, in which steep

gradients are involved.

A formal notation for the method is given, which casts the method in a

framework similar to that of the polynomial orthogonal collocation method

already familiar in the chemical engineering literature (12, 21). Some

tentative suggestions for the implementation of the method are given, in the

form of subroutines supplied in an appendix to the main text.
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SOLUTION OF PACKED-BED HEAT-rXCHANGEP MODELS
BY ORTHOGONAL COLLOCATION USING

PIECEWISE CUBIC HEPMITE FUNCTIONS

Anthony G. Dixon

Introduction

The choice of a model to describe heat transfer in packed beds is one which has often

been dictated by the requirement that the resulting model equations should be relatively

easy to solve for the bed temperature profile. This consideration has led to the

widespread use of the pseudo-homogeneous two-dimensional model, in which the tubular be! i

modelled as though it consisted of one phase only. This phase is assumed to move in pluo-

flow, with superimposed axial and radial effective thermal conductivities, which are

usually taken to be independent of the axial and radial spatial coordinates. In non-

adiabatic beds, heat transfer from the wall is governed by an apparent wall heat transfer

coefficient.

The earliest heat-transfer studies neglected the effective axial conduction term as

this was expected to be negligible by comparison with the bulk-flow term in the long beds

typically used in industry. Axial dispersion was also neglected in mixino studies, and

experiments by Hiby (1) confirmed the absence of axial back-mixing. Some studies have

questioned this omission (2,3). More recently it has been shown (4,5) that measurements n'

temperature profiles in non-reacting systems in laboratory packed bed heat exchangers can

yield statistically meaningful heat transfer parameter estimates only if the measurements

are made at relatively short bed depths, where significant axial and radial temperature

gradients are present. The omission of axial conduction at such bed depths leads to

systematic errors in the predicted temperature profiles, which cause the model to be

statistically rejected when it is fitted to data taken at several bed depths. !f the 7 !-'.

is fitted depth-by-depth, the parameter estimates are found to have a depth-dependen-,

noticed by De Wasch and Froment (6). In this case, they must be regarded as lengt'-
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averaged values rather than point values. Li and Finlayson (7) argue that constant

asymptotic values should be used, as obtained from data taken at long bed depths; this

would give badly-determined estimates as noted above.

When a chemical reaction is present, implying larger temperature gradients, Young and

Finlayson (8) have shown that an effective axial dispersion term should be included, and

Mears (9) has given criteria for the neglect of axial dispersion which show that increasing

fluid velocity reduces axial effects. This is to be expected, since conduction through the

solid, a static effect, is believed to be the major contributor to axial effects.

The disadvantage of including axial di-persion is that an exit boundary condition must

be specified, and in cases where an analytical solution is not available, a numerical

boundary-value problem must be solved in the axial direction, rather than an initial-value

problem. This point has been discussed recently by Jackson and co-workers (10), who

present a cross-flow model of dispersion which allows downstream propagation but not

upstream. However it would not be possible to use a one-phase model of this form for heat

transfer, as axial back-conduction cannot be represented.

For steady-state heat transfer an elliptic partial differential eauation is the result

of using the one-phase model. Previous studies (e,11) have used the orthogonal collocation

method due to Villadsen and Stewart (12) to determine the coefficients of trial-function

expansions in both spatial co-ordinates. This method works well when the temperature

gradients are moderate and few collocation points are required. For steep profiles,

however, such as may be encountered at a "hot-spot" in the reactor, many collocation points

may be required, especially as the generation of these points as roots of polynomials does

not allow them to be placed in the region of interest. Such a collocation scheme is a

alobal one, resultina in a collocation matrix which is large and not uqefully sparse, so

that the solution of the resulting algebraic eouations may become costly. rurthermore, the

polynomial collocation Tethod has been known to oscillate abouit the true solution as the

degree of approximation is increasol (13).



The answer to these difficulties lies in the use of piecewise approximants, such as

cubic splines, which are in general use in the mathematics literature (14). Carey and

Finlavson (15) have introduced a finite-element collocation method along these lines, which

uses polynomial approximants on sub-intervals of the domain, and apply continuity

conditions at the break-points to smooth the solution. It would seem more straight-

forward, however, to use piecewise polynomials which do not require explicit continuity

equations; in this paper the use of piecewise cubic Hermite functions is considered, as

described by Prenter and Russell (16).

The advantages of piecewise polynom
4
als are firstly that the subintervals may be

clustered in regions of interest, so that an improved approximation may be obtained where

gradients are steep, and secondly that the collocation matrix is banded, allowing advantage

to be taken of this special structure, both in work required for decomposition and in

computer storage used. This second advantage was clearly demonstrated in a preliminary

study on the one-phase model (17), where the cubic Hermite function method was shown to

uive an order-of-magnitude improvement in exit temperature profile over the polynomial

collocation method even when the subintervals were chosen to be of equal length. A more

extensive investioation using the one-phase model as a test case is described in the

present work.

The use of two-phase homogeneous continuum models in packed bed modelling has oftenS ben avoided due to the computational difficulties. Recently, Paspek and Varma (18) have

',in, a two-rphase model to be necessary to describe an adiabatic fixd-bed reactor, while

>lixon ani Cresswell (11) have shown that the effective parameters of the one-phase model

-r! be interpreted in terms of the more fundamental parameters of a two-phase model, thus

demonstrating more clearly their nualitative dependencies on the operating and design

rtrstlcs of tho hp. ',!hen two phases and several species are involved, the

c -?utatiosai an'aqies of the cubic Hermite method may he anticipated to he high.

I3- l



In this paper the coupled elliptic partial differential eniatinns aricing fr-n a twu-

phase homogeneous continuum model of heat transfer in a packed bed are solved, and sone

jttempt is made to discriminate between rival correlations for those narameters not vet

1el-established, by means of a comparison with experimental results fros a previous stud:*"

(4,5).
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Collocation using piecewise cubic Hermite functions

a) Boundary-value problems

The interval (a,b] is partitioned into n subintervals by

a = 
<  

1 = b. Then the piecewise cubic Hermite functions are defined
1 2 < . n < n+

for I ( i ( n+1 by

-2 ( - i-i) 3 ~ ( _)2
3 2 i-i

h 3_ + h 2
i-1 .-

2(&-Ei)3 3 ( - 2

h 3 h2 i i+1
1 1

0 otherwise

)2 (

2
h.

2

1 2 1 i+1

i

0 otherwise

The length of subinterval [i, i+] is denoted by hi , The functions are

restricted to the interval [& 1' 2I and €n+ 1 n+ are restricted to the interval

The piecewise cubic Hermite interpolation polynomial tn a function u(,) is

n+1
uC ) = s C ) =  

u( ) k{ ) - u. 1 k

n k=1 k k k k

Hence s( ) interpolates u and its first ,erivativn W at t"P rxintqt" c-' 0
n

partition.
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.T n .so a olt o 4ah1Aterv~il t ar- t + f3-1 )h.12V'3,
1i 1+ 1

an,', for

- 1 +41 i+1

(12

7urther, let a.(.F . an-i similarly for b.. andi c..
-1 13 _ 1] -13

'hen

i - ) =L . (a., - u.)
12) fl 17 -17 -1

u'(. * sn (L. .1 (b. *! u

13 fl 12 -13 -1

The 2n-2 inokr ,w. -,nltants in s (E) arg letermined by collocation at the 2n .ausqyAq

oo~1- .v'ie. t'oJ twoj Thoun~li rv colitions. Comutational Aetailq are uiven~ in the

appenlix, and in illuqtraltive e-xample is shown below.

Ex i'np Ie, corpar 1 s'-n o' soe -~l location mnethodis for a boundiary-value problem.

"'!n'wn pr ;.I' -' rooi test case (27), giving a "bouniary-layer" type of

u0(x) .- 2fxulfx) +- 2yu(-) 0(1



U(O) = 1 , u(1) = e "
Y (la,lb)

2
The solution is u(x) = e

-  
, which falls steeply from u = 1 at x = 0 at a rate

determined by the parameter f.

The following methods are considered:

i) polynomial collocation, implemented using the routines given in (21).

ii) finite element collocation, implemented as described in (15).

iii) cubic Hermite collocation, as described above.

In case (i), collocation was performed at the zeros of PN(1'1)(x), giving a system of

N algebraic ecuations. For methods (ii) and (iii) the interval [0,1] is divided into

n s lbintervals by the set of breakpoints {x }. In the case of finite-element collocation1

it was found to be more effective to collocate at only two points per subinterval, and to

increase the number of subintervals, rather than to increase the number of interior

collocation points in each subinterval. continuity equations must also be included for

case (ii) at the breakpoints; this results in a system of size 3n + 1, with a bandwidth

of

The equations for method (iii) in the above notation are

(c.. + 2yx b +2ya.). u.=0
-iD ij1 is1 -

j = 1,2 ; i = 1,2...n

u(x 1 1 u(xn+ )

These qive a systee of order 2n + 2, with a bandwidth of 5. The same breakpoints

were us,!l for netlhods (ii) and (iii).

The lifference between approximate and exact solutions was examined at the points

x -" nlA1(G.31)O.10(9.10).90; the naxi-um absolte error is denoted by h1ell_.

,one results are shown in tatles 1 and 2. Th= times shown are relative and have no

sbl.'-. mranin 7 . qoth methods (ii) av-i (iii) are seen to be faster for the same accuracy

S ,t~hol (i), esreCially for the -iqe y 
= 

1500 which involves an extremely steep
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gradient. Methods (ii) and (iii) qave .he san- r.- A, , wit, -o'i '

heina faster due to the fewer number o' eouationn ,e~-e. T p nerf-rmanc f to (ii

and (iii) depended on the breakpoints use
,
, a nnr-urfnrr mes, beinn he b f 'e oi-.

These were chosen heuristically, however it should he noted that sirply agareaatinc r r-

ne'ar x 0 did not always qive the best results.

Method (WC Breakpoint Time

N 
1e 11 Time set IteU Method (ii) Methoi (ii

10 0.32 1.7 1 0(0.05)1.0 0.301n-2 1.9 1.4

2t O.52io3 4.7 0(0.01)1.0 0.3210-5 .0 4.1

30 0.391-5 10.3

40 0.2110-8 19.4 0(0.005)0.1 0.4410-6 3.4 2.'

(0.01)0.3(0.1)

1,0

Table 1 y 150

Method i) Breakpoint Time
N 1e Time set e 11 Method (ii) [ ethold -iii)

10 0.22 1.7 0(0.001)0.05 0.49,f)-4 4.3

20 0.12 4.7 (0.01)0.1(0.1)

30 0.13 10.3 1.0

40 0.2210-1 19.5

50 0. 591n-3 32.4 0(0.001)0.1 0.051 - 7 .n 4.0

e (0.05) .0

T'able I x 1e0



b) Elliptic partial differential equations

The use ol piecewise bicubic Hermite functions in collocation scheres for the solution

of elliptic partial differential equations has been described by Prenter (16,20); a short

outline is presented here.

Partition the domain (a,b] x [c,d] by

a =Yl 
< 

v2 <'..< Yn < Yn+1 =b

and c x1 < x2 <...< xm < xr+ =d

then the piecewise bicubic Hermite interpolation polynomial to a function 5(v,x) is

n 1 m+le-'x f2(y.,)~.(y;(x)
In+ m+ {e(y i'x (Y)" (x) + 36 (Y 'x )' i(Y)" (x)

i=I j=1

f-- @ . ) , j ' x). + 2 (y 'xj)K (Y) j(X)}

•x 1 i -.

This involves 4!n+l)(m+l) unknown constants. The Gaussian points for the x an- V

directions are defined as before; combinina the two points for each of dvi,$i

rxj,x,+1) qives four Caussian points for the subrectanale [yi,vi+j × [x ,X 1'.

Collocation at these points for each subrectanale yields a total of 4nc enuations. -t

should be noted that at any collocation point (yik' ,x ) only sixteen bicubic rroduct

functions are non-zero, hence each collocation enuation involves on v sixteer unknowne.

ow let Cv.,xA,. ,x.),

,I
1 - ION I

Let a, (Yx) = (li(v) ,(x) ,(v) (v) (.X ) (x and

tr _-

. - _

"- . .- " - "" " - T - - -' _ _- - 7 _Y - _ - '' '



ii 2

., (*,,O = la .v,×<( , ' ,x) -, :1 a.j 1 Cy *x), ai~1  41Yx)

-' ,, x -_x =v~x

_y

-(A (y, ,X)

xx

-( 2)( -(- ,

C) ,( l (A (', X)

In nartirular, A ( ,x A and similarly for the others.

Then 3ix A (, • *( and aqain similar exnressions hold for derivatives

The abo.'e nrovides a concise notation for the collocation eouations.

T e rp-ainin, 4n 4+ + 4 enuations renuired to determine the expansion coefficients

are sub)lie4 .v t hunclarv ronlitione as follows:

I) .r the lines v = (, anl V = 1, the houndary conditions given are

A. :'erpntiatedi with respect to x. Tnnether with the original equations this

.,i, t,.-, -utions on nOich ho':nlarv, which may he annlied at each of the

- I 1-r-r al "urlnarv ncdee to obtain a total of 4m - 4 conditions. For
2

., 0 a
t  

n fl, then i- = 0 at y = 0 also, and hence

iii
' 4 =2,3...-

' tle Inr Y, ) ), x ,to obtain

' ',*-'"--



(iii) at each corner both (i) and (ii) above may be applied, to lve four

connitions. However only three of these will be independent, and one must be

eliminated, except when there is a corner discontinuity, when an arbitrary

decision must be made.

The 4n + 4m + 4 conditions derived above may be used either to eliminate unknowns

anA thus reduce the size of the system of equations to be solved, as was done in the

oriqinal naper (16), or to generate extra equations. The latter procedure is easier to

anrly when mixed boundary conditions are used, the resulting increase in computer time used

hei-i nffset by the savino in programmino effort.

c) Parabolic partial differential equations

The solution of parabolic partial differential emiations by the cubic Hermite function

method and by several other methods has been reviewed by Hopkins and Wait (23). They also

provide extensive proqram listings for the solution of the set of ODEs which results.

i
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One-phase continuum model

The packed bed heat exchanger considered here is that used in recent experimental

studies (3,5) and shown schematically in figure 1. The long unheated calming section, (a),

and the heated test section, (b), are each considered to be semi-infinite and packed with

similar solid particles. There is a step change in wall temperature at the plane z 
= 

0.

The model equations are well-known, and are, in dimensionless form,

as 1 a 28 1 (a2L 1 ae (2

ax Pea
2  2 ay ay

as
-=0 at y 0 (3)

8 + 0 as x +- (4)

8+ 1 as x + (5)

ae + (Bi)e - (Bi)H(x) at y -1 (6)

Here the Heaviside step function is used to model the change in wall temperature. The

downstream axial boundary condition, equation 5, was found to be consistent with

experimental data in a previous study (5).

The equations (2) - (6) have an easily-determined analytic series solution in terns of

Ressel functions (5); this is therefore a good test case upon which to try out the

numerical method.

' -1:'-
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There are two ',,ints of interst associated with the numerical solution of enuations

(2) - (6): (W) the x-4omain is infinite and (ii) there is a step-function in the wall

boundary condition.

(i) Transformation of the infinite domain

There are several wass of dealina with an infinite domain. Guertin et al (24)

chose pertur-atin solutions of tle model as basis functions. This approach may be

difficult tr extend to more co.nplicated ecriations than the non-linear initial-value

problems which they cociiered; even so, the modeller must do a considerable amount of

analytical work with this meth-od.

Birnbaum and Lanidu5 (2q) suoaest the use of polynomials which are orthogonal over the

infinite domain, obtaining these either by using a weighting function such as e-X2: which

gives Her'ite polynomials orthoaonal over (-o,), or by transforming the infinite domain

onto a finite domain, and usinq conventional polynomials such as shifted Legendre

polynomials. The drawback to these methods is that there is no control of the placement of

the collocation points, some of which are always included in regions where the profile is

essentially flat, and are thus wasted.

The use of standard piecewise polynomials, together with an appropriate transformation

of the infinite domain, overcomes these difficulties, provided some care is taken in the

transformation.

Verhoff and Fisher (26) used the form t tan(-1() in their solution of the Graetz
_ Fi 21 =

nrohle- with axial conduction. Somewhat neater equations result from taking

t tanh(xi ) giving

I-ti 2t 3n 1_ a 1 a (1-t) 32
W~ t (7)

a _xN A t PeP ay + + y a2PeA t
2

-T n at y = 0 (8)

0 at t = -1 (9)

-14-
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0.6 4.0

Analytic sol.

- --- Numerical soln

0.5 Pe A = 4.0

Pe. = 120.0

Bi - 5.0

0.4

a 100

0.3
/

/

0.2 /
/

/

* /

0.1 /

/a =10
/

0 0.2 0.4 0.6 0.8 1.0

FIG. 2: EFFECT OF CHOICE OF SCALING FACTOR a
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The ccilocation ec~uatiofls f'or tli- case are:

(1-t2 tt2

(i + 3Y.t jv t tt

Pe -1"t V. ijuv i

u = 1 ,2 ; v =1,2 ; i = 1,2 ...,n j 1 ,= ..

H{ere is the vector of unknowns for suhrectarngle ij.
j13

The boundarv coniltio-ns are:

T ~t)=0 (j =2,..m)

-2

4 zvt 1,2 ... m+1)

-fv. , 1) =1.()\ =i 1,2 ... n+1)

- Vi 1) = 0

(P (1, t l) + (Pi) A (1, t.)) =(i)ft
-n, - 2. fl3 ?k

= 1,2 , j = , .. r

*..he cn0lrn tl: : erp s c1Cuna:s to " r :re froma numrical method, it is

necssay t tke ntoacoun th- otetia ups f temodl euaion bengsolved. it

wou)! P iarnoF~iat-I-nre,,iip igh ccuacvin he reset sudy asbedtempoerature

rrofilcs are ;Pllr)- acrire:I- -easirel% rnnser~uontly errors of 1~r in cot'parina

nuovs'c ,-al i~- A s Ilt w're noosjHre(I reasonable.



"= 1 at t = 1 rio)

-- (Pi'n+ = Pi !4(t) (11)
y

Tni-iallv it may anrear srinlest t-- let - = I, and use t = tanh x. However this results

ir rte renin" x " 3 1. he bed heino manned onto a small interval [0.995,1]. This is

,ndesirable for two reasons:

1) if subintervals are renuired in the bed downstream of x = 3, it becomes

difficult to rli-e the breaknoints in the t-domain

2 if axial oradients are oresent downstream of x = 3, they will become very sharp

in the t-domain, since 21 a5 so t + 1.7t 2 'x at
(1-t)

it can he seen that for a fixed choice of t. i, different choices of at will locate the

11

induced,' rartition tx:in different p~hysical narts of the bed. Thus aL must be chosen

so that the collncatin points in the t-don in are j]aced in a way that makes physical

sense in te x-iomain. The appropriate value is found by trial and error; an empirical

rule suoaested by experience is to tahe a Pe Pp

The effect of an inappropriate value for a is shown in figure 2. It should be noted

that althouuh Verhoff and Fisher used a = 1 throuuhout, their computations were made for

,fficiently short beds to ensure good results; larmer values of a would be reauired for

te-m'craturs profiles further downstream, which would be of interest in the presence of

reaction.

(ii) Step-chanc in wall boundary condition

It was aoticinated that the discontinuity in wall t-mperature at x = 0, and the

r n; steer local tradients, would lead to a locally poor approximation which might

.alr~, effects furter downstram. it was soon found that mesh refinement in t"=r -'i. .<1res~inn *'er ti' results -onsiderably ov-r the use of an enually-spaced mesh,

.ey. a
- 

-e h ref:entn the radial dir~ction had little effect, and a fairly coarse

... - -, +.tl r,::'- w; a 1 wa;;' rui::lnd to Ye a' enuate.

-iI



The mesh refinement was carried out by heuristically searching for qood breapnirt

distributions, the final choice (corresponding to m = 10) being

(t.} = {-0.1, -0.05, -0.025, 0, 0.025, 0.05, 0.1, 0.2, 0.6}

Any further refinement led to improved values only at extremely short bed depths.

The effect of the wall temperature discontinuity may also be mitigated by an

alternative implementation of the wall boundary condition to that described in the previous

section. The two equations at each interior boundary node (1,tj), j = 2,3 ,...,m, are

dropped, together with one equation at each of (1,-I) and (1,1). These 2m eauations

are replaced by application of the boundary conditions at two points within each

subinterval on the line y = 1. The Gaussian points are not necessarily the optimal

choice, but were used in the absence of any other guideline.

For the case of a uniform mesh, the Gaussian point implementation was an order-of-

magnitude improvement over the breakpoint implementation. When the refined mesh was used,

the two methods gave essentially the same results, except at low bed depths near the wall,

where the Gaussian point method was slightly better. Consequently it was the method used

in the rest of the work.

The reason for the above differences is not clear but appears to lie in the wall

temperature specification. No difference between the methods was found when applied to the

centre-line condition, and reduction of Bi to lessen effects of the discontinuity also

greatly reduced the advantage of the Gaussian point method. It may be that the boundary

condition is more effective when "spread out" using two points instead of being reinforced

I by applying two conditions at one point.

-.1



The comparisons were made at y 0.1,0.2...1.0 for each of 5 bed depths: x =

1.33,2.67,4.00,5.33,6.67. The parameter ranges covered were

PeA 0.25 - 20.0

Pe. 2.5 - 120.0

Bi 0.5 - 8.0

The refined mesh given above was used in the axial direction; the radial mesh used n

= 3, "yi- = {0.25,0.5,0.75}. It was found possible to use the same mesh throughout in the

t-domain, due to the freedom to vary the scaling factor a. This avoided heuristic

searchina for a new mesh for each new set of parameters. Automatic mesh generation was not

felt to he worthwhile, in view of the extra costs involved and the relatively

underdeveloped state of the art (27).

The 1C criterion was met in all cases except for PeA = 20 using this method. For

that case the centre-line discrepancy rose to approximately 3°C at lower bed depths.

Presunably this error could be eliminated by taking higher order approximations. Typical

computation times to produce one set of solutions (i.e., 5 bed depths) were approximately

1.5 sec on a UNIVAC 1110 computer, a reasonable compromise between cost and accuracy.
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Two-phase continuum model

Two-phase continuum models, in which the solid particles and their associated stagnant

fillets of fluid are regarded as a continuous pseudo-solid phase, are to be preferred to

the more traditional cell model of a particle bathed in fluid, which does not allow

conduction from particle to particle. In previous studies, such models have been

simplified by considering a one-dimensional model only (28). This study considers the fu -)

equations, which are, in dimensionless form:

a2 Ta2 1 f f __a 2 ay Pe a 2 s f s

S0 at y = 
0 14)a y ay

f+ (Bif)Tf = (Bi )H(x)
yat y

-- + (Bi )T = (Bif)H(x)
ay s a s

TfIT + 0 as x + -)

I Es

TfTs 1 as x + ( 171

A semi-analytical solution to these equations was derived by Dixon and Cresswell (19), W1

then matched the fluid phase temperature profile to the one-phase model profile to o.btair

explicit relations between the parameters of the two models.

The numerical solution to the system of equations (12) - (17) parallels that of thle

one-phase model almost exactly, with longer computation times due to the increasel size r'

the collocation matrix and its bandwidth. Typical computation times to produce fluii an'

solid temperature profiles at each of five bed-depths were 3 - 4 seconds.
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A discussion of the correlations available for prediction o' the r ,arareter reyu r,

in the two-pha.:e model is presented in (19); those chosen in this study were

2d 1 0.67

Pe d Pe (Pe ) (Re)(Pr)1
PF t r f

1 2dp I/Peaf() 1.73k:

Pe = 1 .0 - 9 .7 E/( ePr ' (RePr T) 1
AF t

Bif = 0 .12 Pe - ) - (Pr - 7 (Pe ) (21 )

.5p1- t d / 22 1
s (k /k )(1/Nu + 0.1k k )

rs g g p

2d k Pe
NF ( crs s PF 22

N k ePr)
t 0

0.255 (Pr)0.33 (Re)0.665 1231Nu; -sP) P) . 2

As the fluid was air, Pr = 0.72; the hed voidaoe t was taker, as ).4. T-e ratino-i

krs/kg and kp/k. were related using the formula of Zehner and Schldn,er (3?T.

Preliminary sensitivity tests showed that the parameter Nu,, had very little effect n

the profiles; in the presence of reaction this parameter would be more irporta tt.

It is clear that by adjustinq the parameters of this model by nonlinear reoressin, In

I excellent fit to the experimental data could be obtained. The value if such a :r c '.4r e

rather dubious, however, and it is more useful t- use the model to obtain ,ualititi,,--

information about the quantities Pe rf( ), P af( and Pi , which are plr v eter-in4o

in the literature.

-41
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j a) Pe rf( )

This quantity is almost certainly a weak function of the tube-to-particlo

iameter ratio Si/,,, although the exact dependence is not wall-estahlished.

Examination of rerorted literature data, especially the results of Kunii et a

(31) at extremely hiah Re, sugqests takinq Perf[) = 8.0.

b) Peaf( )

Recent work of Psiano and Haynes (32) shows the commonly-taken value of

Peaf (-) = 2.0 to be auestionable in the (dt/d p ) ranae considered here. It was

decided to use t'e relationship Peaf - Pea, which results from the model

matching of (19) when Re > 20-30. The values of Pea were poorly determined

from measurements made at bed exit alone (5), so estimates from data which

included profiles at z = 0 were used (4). These values led to great

improvements in the slopes of the predicted profiles.

C) Bi
s

Values of Bis may lie between the theoretical lower bound derived by Olbrich

(29):

si (2.12)(H-)
.s d

p

and Bi = corresponiin to no thermal resistance between solid and wall.

If equation (20) is use) to predict Rip, then it is necessary to take Bi, 
= 

100
n

for a aood fit, as shown in fiFure 3 for a typical case. However, it should he noted that

equation (20) underestimates the vlues of 5i,(= Pi) founA i, (5). This i probably due

to the unreliable correlation used fr u as pointed ort jn (4). If the experimental

esti-ates of Bi are ise iot-a! -F':urtio, (20), then veluec ni in tlie ran,," 1 -

20 are ne-del. Soe n' t-, ' resilts ire shown in fiurcs - 7.
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This result indicates that only precise determination of Rif will allow any

conclusions to be drawn on Bis, since these parameters may be mutually varied over fairly

large ranges and similar results obtained.

The computed temperature profiles in figures 4 - 7 show good general agreement wit,

experiment; some deviation is apparent in the centre of the bed for Re - 73 and 224.

Agreement is improved if lower values of Pe (-) are used, but there is no justification
rf

for this in the literature.

The semi-analytical solution given in (19) may also be compared to experimental

results using the same parameter results as for the numerical method. This is shown in

figure 8 for the case Re - 430. Similar results to the numerical method are obtained at

longer bed depths; at short bed depths the approximation is poor, due mainly to the

inadequacy of the one-point radial collocation method used.

-28-
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Concl us ions

The orthonnal. collocation meth)od usino riecewise cubic mermite voln'-mials "as been

shown to give reasonably accurate solutions at low computing cost to the elliptic partial

J differential equations resultinq from the inclusion of axial conduction in .sodels of heat

transfer in packed beds. The m~ethod promises to be effective in solvina the nonlinear

equations arising when chemical reactions are conaidered, because it allows collocation

points to be concentrateJ where they' are most effective.

The lIuid-phase temperattires oredicted from a two-phase pseudio-homogeneous model were

shown to aive reasonable autreement with experimental measurements, without explicitly

adjusting the model paranet.ars. Tt was demonstrated that more refined experimental

measurements will he needed to determine the parameters of the model; in particular, the

solid and fluid phase wall Piot numbers were mutually adjustable.
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NOMENCLATURE

a specific interfacial surface area (m
- 
1

co fluid specific heat (kJ/kg
0
C)

pellet liameter (m)

i tube diameter (m)

superficial mass flow rate (kc/m
2
s)

h apparent interphase heat transfer coefficient (w/m
2
°C)

hw  apparent wall heat transfer coefficient (w/m2 C)

h wall-fluid heat transfer coefficient (w/m2°C)
w we

hws wall-solid heat transfer coefficient (w/m
2
°C)

hs fluid-solid heat transfer coefficient (w/n
2
°C)

ka axial effective conductivity (w/m°C)

kr radial effective conductivity (w/m°C)

kaf axial conductivity of fluid phase (w/m°C)

kas axial conductivity of solid phase (w/m°C)

krf radial conductivity of fluid phase (w/m°C)

k radial conductivity of solid phase (w/m°C)
rs

k molecular conductivity of fluid (w/m°C)

kr pellet conductivity (w/m°C)

L length of packed test section (m)

P tube radius (m)

r radial coordinate (m)

T, bed temperature, one-phase model (*C)

Tbf fluid phase temperature (C)

TbS solid phase temperature (°C)

To  temperature of calming section wall (1C)

Tw  temperature of test section wall (*C)

u superficial fluid velocity (m/s)

z axial co-ordinate (m)

Dimensionless parameters

Ri apparent wall Riot number, hwR/kr

Ri, fluid-wall Piot number, hwfR/krf

riolid-wall Biot number, hwsR/krs

h. 'ihnterval lenoth

m number of axial. suhintervals

1

-31-



n number of radial subintervals

NF  interphase heat transfer group, aR
2
h/krf

N S  interphase heat transfer group, aR2h/krs
Nuw  apparent wall Nusselt number, hwdp/kg

Nu fluid-solid Nusselt number, hfsdp/kg

NUwf fluid-wall Nusselt number, hwfdp/kg

Pea effective axial Peclet number, Gcpdp/ka

PeA effective axial Peclet number (based on R), GcpR/ka

Per effective radial Peclet number, Gcpdp/kr

PeR  effective radial Peclet number (based on R), GCpR/kr

Peaf axial fluid Peclet number, Gcpd pk a f

PeAF axial fluid Peclet number (based on R), GCpR/kaf

Perf radial fluid Peclet number, Gc pdp/krf

PeRf radial fluid Peclet number (based on R), GCpR/krf

Perf (-) asymptotic value of Perf as Re +
Peal (w) asymptotic value of Peaf as Re + w

Pr Prandtl number, uc k
pg9

Re Reynolds number, Gd /Pp
y normalised radial co-ordinate (r/R)

t transformed axial co-ordinate
Tf dimensionless fluid temperature (Tbf-T0)/(Tw-T0)

Ts  dimensionless solid temperature (Tbs-To)/(Tw-To)

x normalised axial co-ordinate (z/R)

Greek symbols

a axial scaling factor

C bed voidage

cubic Hermite basis function

cubic Hermite basis function

6 dimensionless bed temperature, (Tb-TO)/(Tw-TO)

P viscosity of fluid (kq/ms)

P density of fluid (kg/m
3 )

a general independent variable
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Arnend !, : comput ticna !l tal

For collocatic- at te 7aa san n.oints wit!-in a subinterval, the voctors a _

_C.i ler-. cA l on i n, are (riven by

h 2
=3 12 37 1

1 2 1 1 2 1 h j
- = 2 12 2 hi 12

1 1
1 1 2 1

-i2 h.' 27T' T' 2

h 1 h1

2/i -/3 - 1 2/F3 V -3 +
-Si= 2 t'h T ' h.

ci2 = 2--h--2',h.

1h. "i

These vectors are supplied by a FORTRAN subroutine:

CALL BASWTS (IT, H, V)

This subroutine computes the weiqht% for u(ID)(xil) and u(ID)(xi2 ); i.e. ID is an

inlicator-variable set to n,1 or 2 for the function or its' first or second derivative

respectively. The lenrith of the subinterval containinq xil and xi 2  is supplied to the

subroutine in H, and the weiahts are output in the 2 x 4 array V in the form e.q.

(ai

-2

for 2T , a~"! Fimilarly for 17 = 1,2.

T -,. 'j- f il; -! p. tisp hounlarv valNP pro)llA- reeults in a system of

I "{ : - b.. ." . *%, -~ -. ":e-A .. .. _ . . ..



Au =F(u)

where u is the vector of unknowns. The matrix A corresponds to the linear part of the

differential operator (and may be E 0). If the entire problem is linear then F(u)

reduces to a constant, b, and solution is straight-forward; otherwise iterative methods

must be used. Computational advantage may be taken of the fact that A is a band matrix

if the equations are ordered naturally, some thought may have to be given to the placement

of the boundary equations to obtain minimum bandwidth.

The band matrix A, of order N with M1 subdiagonal elements and total bandwidth i

MT, is stored as an N x MT array. The matrix is factorised in the form A = LU, the

lower triangle being stored in array XM and the upper overwriting A, by the subroutine

BANDET; subroutine BANSOL is then called to solve the banded system LUu = b. The routine,

are simplications of those qiven in (22), where further details on the storage method are

given.

Once the vector u has been obtained, the solution at arbitrary x is found usinn

the formula

u(x) = (a(x) u

where xi < x < xi I.

The vector ji(x) is given by the subroutine

CALL INTwrS(ID,X,XI,XJ,VECT) with ID = 0

x is supplied in X, xi in XI and xi+ I in XJ. Then on output VECT is the 4-
i+

vector ai(x).

If hi(x) is required, INTWTS is called with In 1; ID = 2 aives ci(x).

-36-
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Note BASWTS is a special form of INTWTS where advantage is taken of the need to obtain

weights only at the Gaussian points of each subinterval.

It is easy to see that the elements in lij(y,x), .i,j+1(Yx), ai+1,j(yx) and

ai+1,j+1(Yx) may be gererated from those in ai(y) and a (x). Hence ij(y,x) may

also be generated from jiay) and a.(x) and the product o is defined 1,

A iJ(Y'X) = ai(y) o a.(x)

Similar relations hold for B (y,x) etc. More generally a 
1
6-element vector VC may be

generated from any two 4-element vectors VA and VB via the o-product, and a subroutine to

do this is: CALL OPROD(VA,VB,VC).

Collocation within subrectangle ij requires A ijk for k,Z = 1,2 given lik and

a.j for k,£ = 1,2. Subroutine PRDWTS calls OPROD four times to achieve this; a tynical
2

calling sequence is e.g. to obtain weights for -- on subrectangle ij

3y
2

CALL BASWTS (2,HI,VZ)

CALL BASWTS (0,HJ,VJ)

CALL PRDWTS (VI,VJ,VYY)

Here VI and VJ are 2 x 4 matrices as described above and VYY is a 4 x 16 matrix

(C yy
-ijil

(Cyv(CYY
(ij21

-7rY
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ST~POUTINE NrrN,,TN..p',~MIvIAL

DIMENSIO 10~ ~ ,(PDI)X(PMD

L =Mi

DO 3P I = 1,MI
Ii = Ml + 2 - I
no 25 j = IJ,NM7

25 A(I,J-L) = A(I,J)

L31. - 1

DO 30 3 JI,,MT
30 A(I,J) 0

L ml

D I 100 K 1,\'
X A(K,l)
I1 X

IF (L.LT.N) T, = L + 1
IF (K+1.GT.L) GO To 40

1K =K + 1

DO 35 J = IK,L

IF (DARS(A(J,1)).LE.DAPS(X)) GO To 35

X =A(J, I
I=J

II35 CONTINUTE
40 IP(K) = I

I F (X. NE.O0 GO TO 5 0

IFAIL 1

IV = K

RETURN

450 IF (I.EQ.X) GO TO 70

DO065 J = 1,MT

X =A(K,J)

A(K,j) = A(I.3)
65 A(I,J) = X

70 IF (K+l.rT.L) GO TO ilnO
IK = K+l

DO 90 1 = IK,L

XM(K,I-Y) = (,)fK1

DO RI) 3 2,MT

90A(I,J-1) =A(I,-- Y*A(YJ)
~0 J(,'1

100 c 0%,T I,*U F

PFT!'PN

F'r



IMPLI("I0 t'OT Lr PRECLIION (A-H,O0-7)

IF I.E().K(< 3c T') 10

x (K) (I

FUl) X

10 IF (L.LT.N) =L + 1

IF TO1~r~)0 40)

1Kc = K+1

pO 20 1 = IK,L

x - "(K, I -K)

2C B(I) = B(I) -X*R(K)

40 C 0NT I NIT
L1

X B(I)

1w I- I

IF (L.EC.1) GO TO 65

Dc 60 K = 2,L

X3 X -A( I ,K) *P (I+K)

r, 65 P I) =X/A(I, 1

IF (L.1,T.MT) L =L+l

'cnrNUE

IMPLICIT DOIUPLE PRECISION (A-11,0-7)

..'ESION v(2,4)

S33 = PSQRT(3.ODO)

IF (I0,-i) 1,2,3

1 v( 1,1 )=O.5+2.O/(3.0*S3)

V(1,2)=(j.0+1.0/S3)/1
2
*14

V(1,4(=(l.f/S31.0)/
1 2

*H

GO To4

'7(1,1)=-V1.fl1

(1 ,2(=n. 5/S;3

V (1 ,4 ) =-V(1 ,2)

CO TO 4

\' 1,4)='1 C)(

4 7 1-1 )**(Ir+l

V (2,2 ) =f7y (1,.4)

(2,4 )=J*" ( 1 2)

Vt2,3) =J,*Vl,1)



SUBROUTINE INTWTS(ID,X.XI,XJ,VECT)

IFC(1) 1,M2,3*Z1

VECT(3)-lVECT()
VECT(2 )=(*+4ZY)/
VECT(2)=(4*Z4*Y/H

2MPCT DOUBE PRCISIO (A-,O-Z
VIENSION -V1C(,)V(24 V416 V(),(),V1)
VET(4-*0 +**
V0 10 J=12ZYY*

50 15ETURN

VA(K)V1IN (IK) VVV

II-
DO 10 J=1,26

10 V(IPTK)=WV(K)

RETURN
END

SUBROUTINE OPROD(VA,VB,V)
IMPLICIT DOUBLE PRECISON (A-H,O-Z)
DIMENSION VA(4),VB(4),V( 16)
JJ= 1

DO 10 J-1,2
Do 10 1-1,2

L-2*(I-1 )+1
V(JJ)-VA(K)V(L)

V(JJ+1 )=VA(K+1)*VB(L)

V (JJ+ )-V AC K) *VB CL+1
V(JJ+3)-VA(K+1 )*VB(L+1)

10 JJ=JJ+4
RETURN
END
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